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J. Phys.: Condens. Matter 4 (1992) 967S9696. Printed in the UK 

Magnetic structures and interactions in erbium 

R A Cowleyt and J Jensenf 
t Oxford Phyics, Clarmdon Laboratory. Parks Road. Oxford OX1 3PU, UK 
t Physics Laboratory, Univeniletsparken 5,  21M) Copenhagen, Denmark 

Received 20 August 1992 

Abslrset The magnetic slmctures in a single crystal of isotopically enriched erbium 
have been studied using a high-resolution neutron diffraction technique at the HFiR 
reactor at Oak Ridge National Laboratory. In addition, these Structures have bcen 
examined by mean-field calculations, in which the primary interactions were derived 
from magnetization and spin-wave measurements. The agreement berween theory and 
erperiment is generally very good. A1 i&mediate lempcratures, the structure is based 
on an elliptical qcloid in the (I--c plane,.and blocks of moments with alternating positive 
and negative components in the c-direction give rise to a series of commensurable 
s1mucturcs in the manner proposed by Gibbs and co-worken. These structures are, 
however, distorted by two-ion couplings of trigonal symmetry, which reflect the different 
orientation of thc two HCP sublattices and have a magnitude which is a substanlial 
fraction of the isotropic exchange inferaction. l l l h e  result is a wobbling cycloid, in which 
there is an oscillating moment in the b-direction whose period diffen from that of the 
basic cycloidal structure. In  t he  low-tcmpcrature cone phasq the moments bunch around 
alternating a-directions in a pattern with trigonal rather than hexagonal symmetry. Some 
funhcr consequences of the trigonal couplings on t h e  low-symmell)- magnetic S ~ ~ U C I U ~ C S  

i n  erbium and holmium are discussed. 

1. Introduction 

The first thorough study of the magnetic ordering in erbium was performed by 
Cable er al (1965), using neutron diffraction. They reported three distinctly different 
magnetically ordered phases which can be briefly described as follows. 

(i) Between TN = 84 K and 'TA = 52 K, a sinusoidal ordcnng of the loiigitudirial 
c-components of the magnetic moments, with a period of approximately three and a 
half lattice spacings along the c-axis of the HCP lattice. 

(ii) Between TA and T, = 18 K, the wavevector of the modulated phase qc 
decreases from $ T ~  to $ T ~ ,  and there is ordering of both the basal-plane and 
longitudinal spin components ( T ~  is the reciprocal lattice vector along the c-axis 
of length T~ = 2n /c ) .  

(iii) Below T', the magnetic structure is a cone with a ferromagnetic moment 
a h g  the c-axis, and a basal-plane component with a modulation wavevector of 

In 1974 more refined studies were made (Habenschuss et al 1974, Atoji 1974) and 
phases (i) and (ii) showed higher harmonics of the modulation wavevector, the intensities 
Of which tended to increase with decreasing temperature. Later Gibbs er al (1986) 
performed a high-resolution synchrotron x-ray study, and found in the intermediate 
phase (ii) a number of long-period commensurahle structures with wavevectors +, 3, 
09~3-8~84~/489673+24So7.50 0 1992 IOP Publishing Ltd 9613 
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diagram of erbium in a c-axis magnetic field by neutron diffraction experiments. 

The main purpose of this paper is to provide an improved picture of these 
StructureS. particularly in the intermediate phase (ii), by using both neutron scattering 
and theoretical calculations. Magnetic x-ray scattering techniques provide very good 
resolution, but the intensity is weak, preventing the determination of the intensities of 
the weak reflections. In contrast, neutron diffraction reflections have high intensities, 
although the resolution is relatively poor, and the use of a large single crystal and 
a triple-axis spectrometer makes it possible to detect most of the scattering peaks 
originating from the long-period commensurable structures, as illustrated by the 
study of spin-slips in holmium (Cowley and Bates 1988). We have used very similar 
techniques in these experiments. 

The most important magnetic interaction in erbium, and in the other heavy rare- 
earth metals, is the isotropic RKKY exchange interaction J(ij) between the localized 
moments, which is long-ranged and oscillates in magnitude. If anisotropy effects can be 
neglected, this two-ion coupling leads to a modulated structure with the wavevector q, 
at which the Fourier transform J ( q )  has its maximum. Thc free enera  is minimized 
when the length of the ordered moments on different sites is constant, and the magnetic 
structures therefore consist o[ ferromagnetic sheets perpendicular to the c-axis, with 
the moments rotating through a certain angle, as determined by q,, from one sheet 
the next. The crystalline anisotropy in the EICP structure favours either a longitudinal 
(along the c-axis) or transverse (perpendicular to the c-axis) alignment of the magnetic 
moments. In the latter case, as found in holmium, the magnetic structure is a helix which 
is distorted at low temperatures by the hexagonal anisotropy, with higher harmonics 
at the wavevectors (6 ;t l )qc .  In the  former case, the magnetic structures depcnd on 
the strength of the anisotropy. The longitudinal component orders at TN, and if the 
axial anisotropy is sufficiently large, as occurs in thulium, the ordering of the tranSvcrSc 
components is entirely suppressed, but the longitudinal wave squares up to form a 
structure in which the magnitude of the ordered moments varies as little as possible. 
I f  the axial anisotropy is weaker, mean-field analyses (Miwa and Yosida 1961, Nagamiya 
1967, Jensen 1976) indicate that ordering of the longitudinal componentwill be followed, 
at a lower temperature T;, by ordering of one of the two basal-plane components of the 
moments, to produce an elliptical cycloidal structure in which the moments are aligned 
in a plane containing qc As the temperature is lowered further, there is a competition 
between the squaring of the longitudinal ordering, to reduce the anisotropy energy, and 
the reduction of the eccentricity of the ellipsoidal ordering, to reduce the exchange 
energy. 

In the case of the intermediate phase (ii) in erbium, the nature of the ordcring 
has been the subject of some controversy. Cable et a1 (1965) suggested from their 
neutron diffraction measurements that both basa;-p:aiii ComponCZtS C:de:ed I t  T/g in 
a helical structure. Unfortunately, the scattering from random domains of this non- 
planar structure, and from random domains of the cycloidal structure arc qudlitativeb 
very similiar. The Landau expansion of thc free energy predicts, however, that the 
non-planar structure is unstable compared to the cycloidal structure, at least Close to 
TA, because the variation in the length of the moments is more effectively minimized 
by the cycloidal arrangement than in the non-planar structure. The remaining basal- 
plane component may order in a continuous way, at a lower temperature, if higher- 
rank anisotropy effects tilt the direction of the easy axis away from the c-axis, but 
there are no indications of such an additional second-order transition in erbium. The 

and 3 ~ ~ .  Most recently Lin et a1 (1992) have investigated the magnetic phase 1Y’ IS 
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diffraction experiments reported below did not reveal any difference between the 
ordering wavevectors of the c-component and of the basal-plane components in the 
intermediate phase, and they gave a strong third harmonic in the modulation of the 
basal-plane moments. Both obsenations indicate that the longitudinal and the basal- 
plane components are phase locked, and hence that erbium is ordered in a cycloidal 
structure between TA and Tc. 

The commensurable structures in phase (ii) observed by Gibbs er al (1986) arise 
because the anisotropy favours a large component of the ordered moments along the 
c-axis. Just below TA, the structure is similar to the commensurable thulium structure, 
with four hexagonal layers in which the moments have a positive c-component, 
followed by three layers of moments with a negative c-component The ordering 
wavevector is qc = f ~ ~ ,  and this structure may be designated as (43). However, 
the HCP Structure has two inequivalent sublattices so that the magnetic structure 
repeats after every fourteen magnetic layers, rather than seven, so a more appropriate 
description is (4343) or 2(43). Below Th, the ordering wavevector decreases 
with decreasing temperature, and the system traverses a series of commensurable 
structures, in which more and more of the bunches of three momen8 are replaced by 
bunches of four moments, giving 2(43) i 2(443) - Z(4443) etc. until, just above T,, 
the magnetic structure reaches (44), with a periadicity of eight layers and qc = :T~. 

In this paper, we present a detailed description of these structures, and of the 
low-temperature cone structure, on the basis of both experiment and theory. In 
the next section, we summarize the neutron scattering measuremens, which were 
performed at the HFIR reactor at thc Oak Ridge National Laboratory, USA In 
section 3 a mean-field model for erbium is introduced, similar to that used earlier 
(Jensen 1976), but extended to include a two-ion coupling with trigonal symmetry 
between the  different sublattices, introduced in order to explain the observed period 
doubling of the magnetic structures. In section 4 the  experimental diffraction results 
are analysed and compared with the predictions of the mean-field calculations. Our 
conclusions concerning the magnetic structures of erbium, and a general discussion 
Of the effects produced by the trigonal coupling arc presented in section 5. 

2. Experimental results 

The neutron scattering measurements were performed with the HB3 triple-axis crystal 
spectrometer at the HFIR reactor. Pyrolytic graphite was used as monochromator 
and analyser and the horizontal collimation was 20’-20’-20: open from reactor to 
counter. The incident neutron energy was fured at 14.8meV and a pyrolytic graphite 
filter was used ta reduce the higher-order contaminent neutrons. The wavevector 
resolution was typically 0.01-0.02 reciprocal lattice units and the spectrometer was 
operated so as to measure the elastic scattering with wavevector transfers (OOL), 
(1OL) and (20L) in reciprocal space. 

The sample of erbium was the same isotopically enriched crystal as that used 
in earlier inelastic studies (Nicklow et a1 1971) and was mounted in a variable 
temperature cryostat with the scattering plane of the spectrometer normal to (010). 
The temperature could be held fixed to kO.1 K, and there was little evidence of 
hysteresis in the results on heating or cooling. 

vpical results are shown in figure 1 for scans along both [OOL] and [lOL], with 
the intensity plotted on a logarithmic scale. There is clearly a series of regular peaks 
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in intensity corresponding to a periodicity of Arc, with the largest peaks occurring at 
qc = &rC. The scattering may therefore be deduced to arise from the Z(4443) structure, 
and the large number of peaks shows that the structure is far from siilusoidal. Similar 
mcasurements were performed at other temperatures and the positions of the peaks are 
shown in figure 2. At lower temperatures, the wavevector corresponds to a long-period 
commensurable structure, but above about 4&50K, the structure is incommensurable, 
though close to either 2(43) or 2(443). We have therefore chosen to analyse these 
structures as though they were the nearest commensurable structure. The smallest 
separation of the peaks determines the b s i c  ordering periodicity, qu, and the ratio 
T = qJqU gives the number of times the ordered moments rotate in one commensurable 
period. The different structures are listed in table 1. 

R A  Cowley and J Jensen 

0.0 0.2 0.4 0.6 0.8 1 .o 
Reduced Wavevector (L) 

IO 0 LJ-scan at 35K 

1 .o 1.2 1.4 1.6 1.8 2.0 
Reduced Wavevector (L) 

Figure 1. The neulmn scaflering observed from erbium af 35K. The left-hand !Jane1 Of 

the figure shows a scan along [lOL] and the righf-hand one along [OOL]. The peaks 
marked N are from nuclear mifet ing  and [he remainder are magnetic in Ongin. 

Further information about the structurs can be obtained from the intensities of the 
peaks. These are however difficult to measure and subject to significant errors. Firstly, 
the data were corrected for the instrumental effects arising in obtaining integrated 
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Table 1. Commensurable structures. 
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T (K) Structure qo (rc) qc (rc) 

54, 49 2(43) 117 217 
44, 40 Z(M3) 1/11 311 1 
35 Z(4443) 1/15 4/15 
29 Z(44443) 1/19 5/19 
25 2(444443) 1/23 6/23 
20 (44h (30%) 114 114 

intensities from triple-axis spectrometer scans along [COL] and [lOL] lines in reciprocal 
space (Cowley and Bates 1988). Secondly, the data were corrected for the wavevector 
dependence of the magnetic form factor. Since the crystal was isotopically enriched and 
of complex shape, no corrections were made for its neutron absorption, This is at least 
in part justified because equivalent intensities obtained at different wavevector transfers 
did agree with one another to within about a factor of 2. More difficult are the problems 
of extinction and of multiple scattering. Since our objective was to measure the weak 
reflections, we used a large crystal and there is no doubt that our data suffer from both of 
these problems. We treated the extinction problem by comparing our results with those 
of Habenschuss et a1 (1974), whose intensities were much lower and consequently less 
affected. The higher-order reflections (third and fifth harmonics) in the two experiments 
were scaled to one another, and the intensities of the primary satellites then deduced 
from their data. This gave considerably more intensity for the primary reflections than 
we actually measured, and provides a more satisfactory measure of the correct intensity. 
In the analysis described below we have used these 'corrected' intensities. Multiple 
scattering can give large errors in modulated structures and this was studied by rotating 
the crystal around the scattering vector, and by comparing the intensities obselved at 
equivalent points in reciprocal space. By using these approaches, we obtained a list of 
the best estimates for the intensities for the different peaksobserved in the scans. These 
intensities, which vary over about four orders of magnitude, are uncertain by factors of 
theorderof2or3, but they canneverthelessbeused todeterminethedetailedstructures. 

The different peaks shown in figures 1 and 2 can be classified as odd harmonics of 
the primary reflections, and the intensities in the [IOL] scans decrease systematically 
with the rank of the harmonic. The intensities of the peaks in these scans are dominated 
by the longitudinal components of the ordercd moments. The corresponding results 
for the [OOL] scans, figures 1 and 2, arise from the scattering by the transverse or 
basal-plane components of the ordered moments. It is clear that the same harmonics 
occur as in the longitudinal ordering, which reflects thestrong phase coherence between 
the two components. This is incompatible with a helical ordering of the basal-plane 
moments and is strong evidence for a cycloidal phase (Jensen and Mackintosh 1991). 
An unexpected feature of the [OOL] scans is the observation of higher harmonics at the 
wavevectors q = f(2p + l)q,  + 7 1 ~ ~  with n odd, as well as even. These peaks with 71 
odd would be absent in the scattering from a planar cycloidal structure, in which both of 
the hexagonal sublattices are equivalent. They are also unusual in that the intensities 
are largest for the third and fifth harmonics. As we shall demonstrate below, these 
results show that there is a large two-ion coupling with trigonal symmetry in erbium, 
which modifies the planar cycloid into a non-planar wobbling cycloidal structure. 



20 h .  A ,  - 
1 .o 1.2 1.4 1.6 1.8 0 

Reduced Wavevector [O 0 L] 
Figure 2. (a) A schematic plot o f  the positions at which peaks have been observed in 
the (lOL] scans, indicating the relative intensities by the size of the dots. Ihe different 
peaks are classified as higher odd harmonics of the fundamental, i.e. by the number 
( 2 p  + 1) which relates lheir position at q = f (2p  + l )q,  + nr. (p and n are integen 
and p 2 0) with the position of the main peak at ps. The magnetic contributions to 
the Bragg peaks at (100) and (101) were not determined, but the expected harmonics 
a t  the two positions are included in the figure. (b) A similar plot derived from thc 
[OOL] scans. In the classification of the harmonics, the asterisk indicates those which 
correspond to odd values of n, and would not be present in the absence o f  lhe trigonal 
coupling which distinguishes between the two sublattices of the HCP structure. A few Of 

the lowest-intensity peaks in this plat, for T < 35 K, were 100 weak to be observed, but 
are included in the figure far completeness. 
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3. The mean-field model 

The model which we have adopted for erbium is similar to that used earlier (Jensen 
1976). The Hamiltonian includes the single-ion anisotropy, the Heisenberg exchange 
interaction, the classical magnetic dipole-dipole coupling, and an anisotropic two-ion 
interaction indicated by the spin-wave dispersion relation. The Hamiltonian is then 

The I-, y-, and z-axes are alon res ectivel the a-, b- and c-axes of the HCP lattice. 

0;’ = J,JY + J ,J= .  The Fourier transform of .7(i j) is 
The Stevens operators are 0, *!- - i ( J z O ,  P Yz + O:’J,), where 0; = Jf - J: and 

where N is the number of ions in the crystal, and we use Y(q) as a short-hand 
notation for Z(q) when q is parallel to the c-axis. Analogous quantities may he 
defined for the  other two-ion couplings. 

The dipolar contribution to the coupling of the basal-plane moment.! is included 
in z(q). The coupling of the c-components is JCc(q)  = J ( q )  + J0(q), with 

Jo(q) = -.7dd{0.919+ O.O816cos(qc/2) - O.O006cos(qc)} (3) 

when q is non-zero, and Jo(0)  z 0. The coupling constant 

Jddd = 47r(gpB)’N/V = 0.0316meV 

where V is the volume of the crystal. 
The axial anisotropy 82” is obtained from the high-temperature susceptibilities 

shown in figure 3, which determine g ( 0 )  = 0.207meV and, from the value of TN, 
.7(qc) + &(,(e) = 0.286meV: In the analysis of the susceptibility and the low- 
temperature magnetii.ation, we have included a contribution from the polarization 
of the conduction electrons of 3%, which value, being proportional to [g - l)/g, 
corresponds to the 9% increase of the saturation magnetization observed in Gd. The 
two remaining axial anisotropy parameters, B! and B:, are determined from the 
magnetization along the c-axis in the cone phase at zero field, and its variation with 
field along the c-axis, shown in figure 4. The hexagonal anisotropy E: favours an 
alignment of the moments in the basal plane and is important, for instance, for the 
low-temperature transition to an a-axis magnet, observed when a field is applied 
along this axis. The pointxharge model predicts E: = -?E!, and the best fit was 
obtained using a value of 8,“ about 25% smaller than indicated by this relation. The 
final crystal-field parameters used in the model are given in table 2. 

The inter-planar exchange parameters Z,, are defined by 
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Figure 3. The reciprocal susceptibilities of paramagnelic erbium as a function 01 
temperature. The solid curyes are calculaled and the experimental data are taken from 
Green el 01 (1961). The upper and lower recsuIls (squares and circles) refer respcclivcly 
to a field perpendicular or parallel to lhe c-axis. The lriangles are lhe average oblained 
from a polycryslalline sample. 

and the anisotropic two-ion interaction parameters [ li:;*] are defined similarly. 
The high-temperature susceptibilities, the value of TN and of qc (at TN) lead to three 
constraints on the 1”. The remaining parameters, determining f ( q )  and I<l;’(q), 
are derived from the experimental spin-wave energies in the cone phzse (Nicklow er a/ 
1971). In our analysis, the spin-wave energies were calculated numerically within the 
MF-RPA approximation, without making use of the large-J approximation underlying 
the usual linear spin-wave theory. A detailed account of the theory has been given 
by Jensen and Mackintosh (1991) and by McEwen el al (1991). Nicklow el o/ (1971) 
and Jensen (1976) showed, using linear spin-wave theory, that it is impossible to 
explain the variation of the energies and scattering intensities of the c-axis spin waves 
observed in the conical phase of erbium, if the two-ion anisotropy is neglectcd. This 
conclusion is not changed when we apply the more accurate theory. The linear spin- 
wave theory neglects higher-order 1/J-renormalization effects, and the anisotropic 
component K;;’(q) (Jensen 1974, 1976), is multiplied by an overall Sale  factor 
of about 1.6, compared with the estimate based on the linear theory. However, the 
present analysis indicates that including I<$’(q) ,  rather than Ii;;*(q), gives a better 
overall account of the magnetic properties of erbium. Both kinds of anisotropy have 
similar effects on the spin waves, but they modify the cycloidal structures slightly 
at elevated temperatures in different ways, and Ii;;’(q) suppresses strongly the 
transition to the a-axis magnet, when a field is applied along this direction, in 
contradiction with the experimental behaviour shown in figure 4. 

The final inter-planar coupling parameters are given in table 3, and the intra- 
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a, - - 
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Internal Magnetic Field (kOe) 

Figure 4. The magnelizalion curves in erbium at 4.2K. The figure shows the average 
component parallel to lhe field of the site-dependem angular moments, (Jll), as a 
function of lhe inlernal magnctic field applied along the three symmetrydireclions. The 
salid curves display the MF results, and lhe experimental points are taken from Bozorrh 
er ol (1972), which are consistent with Ihe results obtained by F&on (1969) (see also 
Coqblin 1977) below 60 kOe. shown by the black dots (his c-axis data are obtained a1 
20K, where the slope is apected to be Slighlly larger lhan at 4.2K). ?he saturation 
value of the magnelizalion, when (Jll) = 7.5, is assumed to be 310 emu g-' including 
a 3% increase due to lhe polarizalion of the conduction electrons. 

Table 2. Crystal-field paramelen (mev). 

E; B40 5: 5: 
-0027 -0.3 x 0.13 x IOW5 -0.9 x 10-s 

planar coupling [Ii-?;']" is chosen to be zero (Jensen 1976). The corresponding 
results for the spin-wave energies are shown in figure 5. In addition, the calculated 
scattering intensities of the spin waves are in agreement with the previous theory and 
hence with experiment (Jensen 1974). The two exchange coupling parameters, J ( q )  
and J=(q) = J ( q )  + JD(q), are compared with the effective two-ion anisotropy 

K ( q )  = ( J -  i)2(.J- l)'I<$'(q) ( 5 )  

in figure 6. In terms of K ( q )  the (leading-order) contribution to the cone-energy 
at zero temperature is - i N J z K ( 2 q , )  cos20sin4 0. A comparison of the magnitude 
of the different couplings involves some arbitrariness. The anisotropy component 
depends on the direction of magnetization (cosz 6' sin4 6' Y 0.04), and the comparison 
may be based on the energy contribution, as here, or on the effects on the excitation 
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3.0 

1 0  
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Figure 5. Spin-wave dispersion relations in lhe c- 
dircction in lhe cone phase of erhium at 4.5K. 
The closed and open circles represent the measured 
+ q  and -q  branches, respeclively (Nicklow n al 
1971). The solid lines are the results of the MF-RPA 
calculation. 

Figure 6. The Fourier transform of lhe two-ion 
couplings in erbium as determined from the inler- 
planar coupling coefficients given in table 3. .7(q) 
and & ( q )  (lhe dashed line) and the anisotropy 
component K ( q )  are plotted as functions of the 
reduced waveveclor q fTc9  along the c-axis. 

Tehlc 3. Inler-planar coupling paramelen (mev). 

n n 1 2 3 4 5 

[K:;'], x 105 0.0 -0.8 -0.7 -1.0 0.0 -0.3 
3" 0.165 0.073 - 0 . m  -0.no6 -0.018 -0.003 

/Ti:;]- x 103 0 0.6 -0.25 -0.05 

energies, as considered previously (Jensen 1976), in which case the effective K ( q )  is 
a factor of 4 larger than the function defined in (5). 

The general arguments presented in the appendix show that the symmetry of 
the HCP lattice allows two-ion couplings which change sign when the sublattices 
are interchanged, or when the crystal is rotated 60° around the c-axis. lb lowest 
order there are three possibilities, and the one which most readily accounts for the 
measurements is 

We therefore take the total Hamiltonian as 31 = 31" + 31,. 
MF Hamiltonian for the ith ion, XM,,(i), includes the exchange term 

The two-ion couplings are treated in the mean-field approximation, so that the 
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According to the general relations derived in the appendix, the contribution of XH3 to 
'XMF(i) is given by 

where the argument p rt n denotes an ion in the ( p  + n)th hexagonal layer. n b l e  3 
gives the values used for the inter-planar coupling constants [Ii;,']", which were 
obtained by comparison of the calculated and observed neutron diffraction intensities. 

The structures were calculated by a straightfonvard iteration procedure. The first 
step was to assume a distribution of the expectation values of the various operators, 
and to insert these values in the MF Hamiltonian for the ith ion, which was then 
diagonalized. The partition function, the free energy, and new expectation values for 
this ion could then be calculated. By carrying out this calculation for all the different 
ions in one commensurable period, we obtained a new distribution of expectation 
values, and the procedure was then repeated until self-consistency was obtained. The 
convergence is reasonably rapid except close to a second-order transition. In the 
calculations, the length of the commensurable period was considered fLxed, so that  
the derived structures are generally only metastable. Except for the specification of 
the length of the commensurable period and the main characteristics of the structure, 
e.g. whether the arrangement is cycloidal or conical, the structures given by the model 
are independent of the starting distribution. 

The trigonal coupling was included in all the structure calculations, but estimates 
showed that it is unimportant in the calculation of the spin-wave dispersion relation. 
This is also the case for the single-ion hexagonal anisotropy B:, and both wcre 
neglected in the spin-wave calculations of figure 5. These interactions have a slight 
influence on the mean opening angle 0 of the cone, which was accountcd for by a 
small adjustment of E: in the spin-wave r~lcnlaticm, and also lead to off-diagonal 
interactions between spin-waves at different g-values. The secondader  effects on the 
spin waves are small, and the first-order energy gaps, which occur whenever the spin- 
wave energies E ( q )  = E ( f q  f3q,  + .,) or E(q) = E ( + q  % 6q,), are estimated to be 
of the order of 0.1meV, which is too small to have been resolved in the experiments. 
Such gaps do not coincide with the two gaps indicated by the experimenrs close to 
q = f0.4rc, which may rather be explained as originating from a thrcefold symmetric 
interaction between the spin waves and the transverse phonons (Jensen and Houmann 
1974, Jensen and Mackintosh 1991). 

The model developed here has the same deficiencies in describing erbium at low 
temperatures as theearlier one (Jensen 1976); thecone phase has too high an energyand 
the fit to the basal-plane magnetization curves at 4.2K is unsatisfactory. The calculated 
energy of the cone phase lies about 1 meVlion above that of the cycloidal phase in the 
zero-temperature limit. Part of the discrepancy arises from the two-ion magnetoelastic 
effecB, and the a-strain changes occurring at Tc account for about 0.2meVlion (Rosen 
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er a1 1973, Jensen and Mackintosh 1991). In the calculation of the low-temperature 
magnetization curves in figure 4, we have neglected the more stable phase, in which the 
c-axis moments oscillate between positive and negative values, as being an artefact of 
the model. The agreement with experiment is good when the field is applied along the 
c-axis, and also at low fields, but not at high fields, in thebasal plane. The model accounts 
correctly for the elJecrive anisotropy in the zero-field cone phase. 

The a-axis magnetization data (Bozorth er al 1972, F&on 1969) show two low-field 
transitions, at ahout 20 and 35 kOe. The calculations indicate that the system is in the 
fan phase between the two transitions, and that it is ferromagnetic above the second. 
Around 120 kOe, the angle between the direction of the ferromagnetic moments and 
the c-axis changes abruptly from - 3 5 O  to 90'. In the case where the field is applied 
along the hard axis in the basal plane, the b-axis, the fan phase appears to he stable from 
about 20 kOe up to the maximum field ofabout 140 kOe. 

The discrepancies between the results predicted by the model and the experimental 
data indicate that it is incomplete. We have already mentioned that rhe a-strain two- 
ion couplings tend to stabilize the cone phase. All the strains influence the basal-plane 
magnetization, hut the magnetoelastic changes are estimated to be too small to explain 
all the deficiencies. We have neglected any variation of the coupling parameters with 
temperature, although the temperature dependence of the ordering wavevectorsuggests 
such an effect, which has also been observed in other rare earths (Jensen and Mackintosh 
1991). The RKKY exchange coupling may change due to the deformation of the Fermi 
surface of the conduction electrons induced by the polarization of the local moments, 
or, as proposed recently by Plumer (1991) for the case of holmium metal, because of 
two-ion magnetoelastic effects. In  addition, the analysis of the spin-wave dispersion 
relation does not exclude the possibility that other axial anisotropic two-ion couplings, 
besides the classical dipole term, are present. As discussed earlier (Jensen 1976), these 
couplings do not influence the spin waves very much but may be important for the 
structural energies. It is possible to remove the two specific discrepancies mentioned 
above by allowing the difference J (  qc) - J ( 0 )  to be temperature dependent, assuming 
the low-temperature value to be about a factor of two smaller than that derived from the 
high-temperature properties. However, this more complex model has otherdeficiencies, 
as the descriptions of the spin-wave energies and of the magnetic structures in the 
intermediate phase become less satisfactory. All in all, these features indicate that 
a more realistic model for erbium than the one presented here should include the 
magnetoelastic effects, a temperature variation of r(q), and additional axial two-ion 
anisotropy. Although the existence of various possibilities for the anisotropic two-ion 
couplings in erbium may introduce somc arbitrariness in the derivation of the isotropic 
exchange coupling from the spin-wave data, the J (  q )  of figure 6 is close to that obtained 
carlicr, indicating that it is quite insensitive to the assnmed form of the anisotropy. 

R A Cowley and J Jensen 

4. The commensurable magnetic structures 

The magnetic structures of erbium have been determined in two different ways. 
Firstly, the mean-field theory described in section 3 has been used to calculate them. 
The structure is specified by (Jp), where p is a label of one of the m different layers 
in a commensurable period. The static correlation function is then given by 
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we assume an equal distribution of domains, so that terms in the cross-section which 
are either off-diagonal or odd with respect to n cancel. The scattered intensity is 
proportional to the components of the moments perpendicular to the wavevector 
transfer, so that 

I(@=) = SA.) + S,,(K) 

I(1oL) = (1 - +* i ) [szz(K)  + s,,(K)] + ( 1  - ci;)s.,(K) 

(9) 

with L = q/T,, while 

(10) 

where R, and kII are respectively the component of the unit vector n f K perpendicular 
and parallel to the  c-axis. 

When IC is parallel to the c-axis, the scattering function does not depend on 
the orientation of the two sublattices and equation (8) is identical to that which 
would be derived for a simple hexagonal lattice with the smallest effective reciprocal 
lattice vector of 2 ~ , .  Similarly, in the absence of the trigonal intcractions, the mean- 
field Hamiltonian does not distinguish between the two sublattices. Consequently, 
alternate peaks in the [OOL] scans, figures 1 and 2, should have zero intensity for the 
magnetic structures suggested in table 1. We can obtain non-zero intensity for these 
peaks by interchanging the triplets and quartets to give for example a (4433) structure 
instead of a (4343) structure. These structures are however energetically unfavourable 
and furthermore give significantly different neutron diffraction intensities from those 
observed. This explanation of the extra p e a b  must therefore be rejected. 

A more satisfactory explanation is that the Hamiltonian contains a term, or terms, 
which distinguish between the two sublattices, such as the trigonal interaction given 
by X, in equation (6). The different possible forms of such an interaction are 
discussed in the appendix, and all have similiar effects. If, in the  absence of these 
terms, the magnetic ordering is a planar cycloidal structure in the z-z plane, they 
cause the structure to distort in the y-direction, imparting a wobble to the cycloid as it 
propagates in the c-direction. These distortions have wavevectors 3q,+r,, and qc+Tc. 
In the case of the (4343), structure qc = $rc, and the z- and %-components repeat 
after evev seven layers, while the y-component repeats only aftcr cvcry fourtccn 
layers. The mean-field theory was used to calculate the commensurable structures 
throughout the cycloidal phase, and the results are shown in figure 7 for the 2(43) 
and 2(4443) structures, and in table 4 for the 2(44443) structure. The correlation 
functions for these structures were also calculated and are compared, in figure 8, 
with the results derived from the corrected experimental intensities. As cxplaincd in 
section 2, we used the results of Habenschuss el al (1974), supplemented by those 
of Atoji (1974) to determine the intensities of t he  primary reflections relative to the 
higher harmonia. We furthermore used their careful analysis in converting these 
intensities into absolute amplitudes and hence in deriving the correlation functions. 
The agreement between the theory and the experiments clearly indicatcs that the 
calculated structures are substantially correct. 

The structures were also deduced directly from the experimental correlation 
functions (neglecting the peaks at (001)). The intensities are proportional to the 
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4 3  4 3  12 11 

2(43) 2(4443) 
Figure 7. The s1~clures of the Z(43) and 2(4443) phases ut erbium ab drtrraiinrd lrom 
the model al, respectivcly. 49K and 35K. The ( a ,  b ,  c)-axes shown are of lcngih J = 7.5, 
corresponding lo the saluraled 4f momem T h e  dashed lines show the projections nf 
the angular momenls on lhe a-c plane. The moments are labelled according 10 the 
phase convention of eqn (12). and in lhe remaining halves of the periodic units have the 
same a- and c-companenls but revencd b-components. This gives rise 10 a non-planar 
wobbling of the cycloid, which is small at high lcmperaturcs. 

squares of the appropriate amplitudes of the Fourier expansions for the ordered 
moments. In general the structures cannot be obtained from the intensities without 
a knowledge of the phases. In all of the calculated 2(4.. .3 )  structures the ordered 
moments are, however, characterized by the expansions: 

(J,J = ( - 1 ) ( 9 - 1 ) / 2 A I ( ~ ) ~ i f l [ ~ 9 E p ~ / 2 ]  

(J,,) = (-1)(5-1)/2Ay(s)sin[s(q, + ~ ~ ) p c / 2 ]  

( J z p )  = ( - l ) ( " - ' ) ' 2 A . ( s ) c o s [ s q , p c / 2 ]  

a=1,3. ... 

(11) 
8~1.3, ... 

a=1.3, ... 

in which all the amplitudes A , ( s )  are positive, and s r,/q,,. A,(s) decreases 
monotonically with increasing s as docs A , ( s )  in general, while the behaviour of 
A, ( s )  is more complicated. The choice of these signs is supported by the ObSeWdtiOn 

smallestilargest when ( J z p )  is largesthnallest. By using these phases, the intensities 
measured in our experiments and those of Habenschuss el al. (1974), we obtain 
the results shown by the circles in figure 9 for the 2(443), 2(4443) and Z(44443) 
structures. The comparison with the mean-field results shows that both methods give 
rise to very similiar structures for the  J ,  and J ,  components. The J ,  components 
are similar to those shown in figure 7 but are omitted from figure 9 for clarity. The 
main difference is that the projections of the structures on the a-c plane obtained 
from the experimental intensities are rather more open than those obtained from the 
model. 

that if ( J z p )  = iJ then A,(s)  = 4 J / n ~ ,  and that the 1;- afid y-cur,rpu,,rrrrr - "------"'" Y . l  ".Ip 
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Figure S. ?he comelalion functions I(O0L) and J(I0L) of the commensurable magnetic 
~tmcture~ in erbium in the inlermediale cycloidal phase. The lines are derived from the 
calculations of the S I ~ U C ~ U ~ S ,  and the circles are [he experimental rcsuI1s determined 
from lhe neulron scattering intensities. Tl~~he logarithmic scales in the two plots dilfcr by 
one decade. 

The ordered moments in a layer next to the triplet (p = 2 and 17 in tablc 4) 
have a large basal-plane component. At 25K, the model predicts a tendency for this 
moment to jump into the basal plane to give a structure we denote as 2(4444303) 
instead of 2(444443). However, a comparison of the calculated intensities with the 
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Table 4. The 2(44443) stmucturc at 29K as determined from the model. The next 19 
layers are identical with the first 19 given in the table. except that the signs of (Jrp) 
and of ( J z p )  are reversed. 

~ ~~~ ~~ 

P (JIP) (JYP) (JzP) 

0 0.0 0.0 6.964 
I 2.730 0.421 6.261 
2 4.782 0.871 -3SW 
3 1.910 0.474 -6.709 
4 -0.651 0.018 -6.924 
5 -2.891 -0.210 -6.000 

6 -3.369 -0.419 5.567 

8 0.897 -0.115 6.899 
9 2.965 -0.077 5.899 

7 -1.214 -0.2~9 6.860 

IO 2.965 0.077 -5.899 
11 0.897 0.11s -6.899 
12 -1.214 0.259 -6.860 
13 -3.369 0.419 -5.567 
14 -2.891 0.210 6.000 
15 -0.651 -0.018 6.924 

17 4.782 -0.871 3.800 
I6 1.910 -0.474 6.709 

18 2.730 -0.421 -6.261 

a 

4 3  

Z(443) 2(44441) 
Figure 9. The s1ructures of the 2(443), Z(4443) and 2(44443) phases. The lines are 
the calculated angular moments projected onto the (I--c plane, and the circles are the 
results deduced from the expenmental intensities shown in figure 8. The moments in 
the remaining parts of the periodic structures, which are not included, are related to 
those shown by simple symmetry operations. 

observations clearly favours the latter structure. 
StrUCtUfe. 

The mean-field theorypredicts that the freeenergiesof the (3030) and the (44) StTUCtUTe 
The situation is more uncertain at 20K for the eight-layered, qc = 
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are nearly equal, but the scattering from these structures differs in that the third 
harmonic in an (OOL] scan is a factor of about 200 larger for the (3030) structure than 
for the (44) structure, so that it should be easy to distinguish between the two. However, 
our experimental results and those of Habenschuss el al(l974) give very different values 
for this intensity; our results shown in figure 10 favour the (3030) structure, but theirs 
indicate the (44) structure. We conclude that further work is needed to clarify the 
structure of this phase and that, since the energies of the two competing structures are 
very close, both may occur under different circumstances or in different crystals. 

Figure 10. The correlation [unctions of the +-phase and of the cone. The meaning of 
the symbols is the same as in figure 8. 

The experimental results obtained for the cone phase at 10 K are shown in figure 10. 
The ordering wave vector is 0 . 2 8 3 ~ ~  zz & T ~ ,  giving a period of 42 hexagonal laycrs. Thc 
second largest peak in the [OOL] scan has q = 1.476rC, and in the [lOL] scan thcre 
are large peaks with q = 0.4767, and 0.5247,. These peaks are readily explained as 
arising I~om the effect ul thr. trigoiral coupling on the  basal-plane helical ordering. If rhe 
basal-plane moments spiral uniformly, the  trigonal coupling induces an anisotropy term 
proportional to ( - l ) p   COS^^,, where 4, is the angle between the z-axis and the basal- 
plane moments in the pth layer. This term leads to bunching, analogous to the effect 
of the single-ion hexagonal anisotropy, and thus to higher harmonics at (3 f l)q,  + T ~ ,  

The model predicts not only the 2:-harmonic at q = 1.476rc, but also a 4.*-harmonic 
at q = 1 . 9 5 2 ~ ~  close to the nuclear Bragg peak, which is nearly as strong but was not 
observed in our measuremcnts. In contrast, Lin er al (1992) have clearly resolved both 
harmonics in the cone phase (at zero field), and a comparison shows a close agreement 
between their intensities for the two harmonics and those prcdicted by the mean-ficld 
model. We do not understand the origin of the differcnces between the two experiments. 
If, in the mean-field model, the K z i ( i j )  coupling is replaced by K::(ij) ,  the  2.'- 
harmonic is much weaker than that observcd, and consequcntly the latter was neglcctcd. 
The absence of a S.-harmonic in both the  calculations and in the measurements shows 
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that the single-ion hexagonal anisotropy is unimportant for the cone structure (it is 
effectively multiplied by sin60 rz 0.01). The trigonal coupling is therefore responsible 
for the lock-in of the structure at qe = Although the period of the commensurable 
structure is 42 layers, it effectively repeats itself after every 7 layers, modulus an odd/even 
multiple of 60' for an odd/even number of layers. This periodicity is reflected in the 
observed and calculated 7.-harmonic at 4 = 1 . 6 6 7 ~ ~ .  This structure is shown in figure 11, 
which illustrates the repeat every 120°, with the momentson alternatesublattices having 
equivalent structures rotated by 60'. This structure is therefore a graphic illustration of 
the importance of the trigonal coupling and its effect in stabilizing the &7c wavevector. 
The measurements contain a number of other weak peaks, both in the [lOL] and the 
[OOL] scan, which are not reproduced by the model. Some of these may be due to 
magnetoelasticeffects, the effects ofwhich are neglected in the model, and others may be 
spurious. For example, peaks in the [lOLl scan corresponding to the one at q = 1 . 2 8 6 ~ ~  
in the [COL] scan should have been visible, but were not observed. 

R A  Cowley and J Jensen 

Figure 11. A projection on the basal plane of the calculalcd moments in the cone phase. 
The solid and dashed lines distinguish between the two wblattices. The moments 0" 
a particular sublattice bunch around the corresponding three o directions, leading 10 

a pattern with a threefold rather than sixfold symmetry. The magnitude of the planar 
moment varies slightly, and is accompanied by a corresponding small varialion of the 
c-axis component. 

The calculated neutron diffraction intensities in general agree so completely with 
the experimental observations that there can be little doubt that the basic features of the 
structures are correct. However, there are some discrepancies, and it is difficult to judge 
which of them are due to failures in the model and which to experimental dilficulties. In 
spite of the precautions which were taken, some of the weak pea'ks are contaminated by 
multiple scattering and possibly by weak contaminants in the incident beam. In addition, 
extinction is important. For instance, at the transition to the cone phase near 18K, 
the intensity of the (100) B r a g  reflection increases abruptly. We observed roughly a 
doubling of this intensity at the transition, while Hahenschuss er al (1974) obtained an 
increase of a factor of six. The discrepancies at the highest temperatures in figure 8 
may, in part, reflect that the model predicts TA = 54.8K, whereas the experimental 
value seems to be higher (some 3-5K above that reported earlier). In fact, there arc 
indications that the basal-plane moments are ordered at even higher temperatures, 
but at a different wavevector from that of the c-axis component This requires more 
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experimental study, as do the peaks observed at and near to [Ool] in many of the [OOL] 
scans. It is hard to understand how these peaks, which have also been observed and 
discussed hy Lin et al (1992), are produced by the magnetic structures. On the other 
hand, neither do they seem to he due to multiple scattering. It is possible that they 
are due to stacking faults combined with the trigonal couplings, or that the conduction 
electrons can produce this kind of scattering in the magnetically ordered state. 

5. Conclusion 

High-resolution neutron diffraction experiments and mean-field calculations 
have been used to determine the commensurable magnetic structures of erbium. This 
study illustrates very effectively the complementarity of the two techniques. Neutron 
diffraction alone can go far towards solving even rather complex structures, but ex- 
perimental difficulties with, for example, multi-domain samples, multiple scattering 
and extinction, as well as the fundamental problem of phase determination, make 
the support of the calculations invaluable. They also suggest distortions of the struc- 
tures, such as the wobbling of the cycloid and the trigonal bunching of the cone, 
which would be very difficult to deduce directly from the experimental data, as well 
as identifying the novel type of interaction which must he invoked to produce such 
distortions. The good agreement between the experimental and calculated diffracted 
intensities gives the deduced structures great credibility. 

All the parameters of the model Hamiltonian, except the trigonal coupling, 
were obtained from magnetization and spin-wave measurements. The somcwhat 
unsatisfactory fit to the basal-plane magnetization curve in the cone phase, shown 
in figure 4, makes it evident that the present model for erbium is incomplete. The 
basic reason is presumably that, since S is small in erbium compared with L ,  t he  
RKKY exchange is relatively weak compared to other two-ion couplings and to the 
magnetoelastic effects. We anticipate that there are a number of additional two-ion 
anisotropic couplings in erbium, which have effects on the magnetic properties, hut 
which we have not considered and are difficult to isolate. 

In the intermediate phase, between the ordering tempcrature Tk of the basal- 
plane components and Tc, the basal-plane components are not helically ordered, as 
originally proposed by Cable et al (1965). To a first approximation, the hodograph of 
the moments is an elliptically polarized cycloid, whose plane lies in an a-c plane of the 
crystal. The c-component of the ordered moments is the largest at all tempcraturcs, 
and the commensurable structures are constructed from sequences of 3 or 4 successive 
hexagonal layers, with the c-component alternating in sign from one block to the next. 
This type of commensurable ordering of c-axis blocks was originally proposed by 
Gibhs et a1 (1986), and is confirmed, with one reservation, by the present work. From 
our more detailed examination of the structures, we conclude that the 3-sequences 
are all very similar, with the ordered moments in the second layer along the c-axis 
and those in the first and third layer rotated oppositely an equal angle away from 
the c-axis, like the layers 294-1 in figure 7. The four different ordered moments 
in a 4-sequence, surrounded by other quartets, are also arranged (approximately) 
symmetrically with respect to the c-axis, as the layers 6-9 in figure 7, whereas a 
4-sequence next to a 3-sequence is distorted. The triplet induces a large rotation of 
the moments towards the basal plane in the layer closest to the triplet, and because 
of the hexagonal anisotropy, there is a tendency for these moments to jump into the 
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plane, creating a 0-layer with no ordered c-axis moment. This tendency increases 
with decreasing temperature, and our calculations and experiments indicate that the 
eight-layered structure at 20K is more likely to be (3030) rather than (44), whereas 
the structures studied at higher temperatures do  not seem to involve any 0-layers. 

The planar arrangement of the moments in the cycloidal intermediate phase, 
between 7'' and Tc, is only an approximation. The experiments show clearly that 
the magnetic structure-s depend on the two different orientations of the hexagonal 
layers in the HCP lattice. The smallest effective reciprocal lattice vector along the 
c-axis, reflected in the magnetic peak positions in the [OOL] scans, has the length 
T~ and not twice this value. This can only be explained by a trigonal coupling in 
the magnetic Hamiltonian, and the possible couplings of this type were established 
in a systematic way using general symmetry arguments. Such interactions induce 
a simultaneous ordering of the b-component with the a-component at TA, whose 
magnitude is proportional to the square of the a-component, to leading order. The 
basic ordering vector of the b-moment is q = 3qc+ T ~ ,  and gives rise to the harmonics 
in the [OOL] scans with q = f ( 2 p  + l)q, + TZT, with odd values of n, whereas the a- 
component is responsible for the cvcn-n harmonics. In accordance with equation (11) 
the largest displacements along the b-axis occur for the moments in the 4-blocks 
closest to a 3-block, as shown in figure 7 and table 4. The difference in the ordering 
wavevectors of the two basal-plane components means that the magnetic structure is 
essentially non-planar, and forms a wobbling cycloid. In the case of the eight-layered 
structure, the two kinds of harmonics coincide, and the (3030) and (44) structure$ 
are calculated to be only weakly non-planar. Consequently, the (44) structure is, to a 
good approximation, a tilted rather than a wobbling cycloid. We note that the trigonal 
coupling is cancelled out if the ellipsoid of the  ordered moments is parallel to thc 
&c mirror-plane of the HCP lattice, and does not therefore produce any distortion of 
a cycloidal structure in this plane. 

This is not the first time that trigonal couplings in the rare-earth metals have 
been considered, but it is the first time that unambiguous features of the magnetic 
structures have required such low-symmetry couplings for their explanation. In their 
study of the commensurable spin-slip structures in the helical phase of holmium, 
Cowley and Bates (1988) observed some weak peaks which suggested a modulated 
c-axis component superimposed on the helix. This result can be explained by the 
trigonal couplings (Jensen and Mackintosh 1991), since the helical components with 
the wavevector qc along the c-axis induce an ordering of the c-component with 
q = 3q, + T ~ .  In the spin-slip structures of holmium, the c-axis moment is zero at 
the single spin-slip planes, where the basal-plane moment is along an easy b-axis. On 
the pairs of planes, in which the deviation between the basal-plane moments and the 
nearest easy b-axis is (approximately) plus and minus the same angle, the magnitude of 
the c-axis component is constant but changes sign after every pair. Tne correspondirlg 
modulation of the c-axis component in the cone structure of erbium is calculated to be 
extremely weak and has not been observed. The trigonal coupling may also explain the 
lock-in transition to an eight-layered commensurable structure observed in holmium 
near 96K (Plumer 1989, Steinitz er al 1989, Tindall er al. 1991). In the absence of 
the trigonal couplings, the lock-in can only be caused by the hexagonal anisotropy 
(possibly somewhat enhanced by a 7-strain deformation of the basal plane), and this 
single-ion anisotropy is very weak at such high temperatures. In the eight-layered 
structure with q, = i ~ ~ ,  the trigonal couplings induce a modulated c-component at 
q = -3qc+~c ,  which has the same wavevector as the helix. This structure is a n a h P J S  

R A Cowley and J Jensen 
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to the (3030) structure in erbium, and in holmium it is (approximately) a tilted helix, 
with the 0-layer moments and tilt-axis parallel to an easy b-axis. Hence, although 
the coupling is weak, its importance for the umklapp energy is much enhanced. If 
the trigonal couplings are responsible for the lock-in transition in holmium, they also 
offer a simple explanation for the strong enhancement of the lock-in effect observed 
when a magnetic field is applied in the c-direction. In this case the 4.*-modulation of 
the helix, which is proportional to the ferromagnetic moment along the c-axis, leads 
to a ferromagnetic basal-plane component (4q, + rC = 27J contributing directly to 
the umklapp energy. Hence the trigonal couplings have the unusual effect of inducing 
a ferromagnetic basal-plane component in the eight-layered cone structure. 

The trigonal couplings were first considered in order to explain the strong 
interaction between the acoustic magnons and the optical transverse phonons 
observed in the c-direction of Tb (Jensen and Houmann 1974). Their analysis shows 
that this dynamical interaction is a consequence of a coupling with threefold symmcuy, 
and that the coupling depends on a non-collinear polarization of the conduction 
electrons, because it is found to involve the transverse phonons polarized orthogonal 
to those predicted in the case of a pure ferromagnet. Liu (1972) also concluded that 
the acoustic-optical interaction must derive directly from the spin-orbit coupling of 
the conduction electrons. His arguments are straightforwardly generalized to produce 
the trigonal couplings which we have considered from the spin-rbit coupling of 
the conduction electrons, and these interactions are equivalent to the antisymmetric 
Dzyaloshinsky-Moriya interaction in the magnetic transition metals. The spin-orbit 
effects on the band electrons in the rare-earth metals are stronger than in the 
transition metals and the localized moments in the rare earths (except Gd) have 
a large orbital component. The combination of these two factors may explain why 
the trigonal couplings in the rare-earth metals are relatively much larger than the 
very weak Dzyaloshinsky-Moriya interactions in the transition metals. 

The trigonal inter-planar couplings in the model were determined from the 
neutron diffraction intensities. The /iW(;j) interaction was neglected becausc of 
its weak influence on the cone structure. The two other couplings, Ii-;i(ij) and 
/<;;(ij), give similar results We have chosen to concentrate on the first, mainly 
because it is a coupling between two odd-rank tensors, and thereby emphasizes that 
this interaction derives from the spin-orbit coupling of the conduction electrons. 
A model including only the inter-planar coupling [ f<ii], between neighbouring 
planes leads to much larger differences between the 3.;-, 5.*- and 1.'-harmonics 
than obscrvcd cxpcrimcntally. Conscqucntly sccond and third ncighbouring-planc 
interactions were included and the fit thereby significantly improved. The fits of 
the (2p + l).*-harmonics in the c-axis scans could possibly be improved fur ther  
by introducing more inter-planar couplings, but most of the remaining discrepancies 
behave somewhat unsystematically and may be largely due to experimental dilficulties. 
The inter-planar coupling coefficients, scaled with respect to their J-dependence, 
(J - f ) ( J  - 1)[IC:;ln, are comparable in magnitude to the two-ion anisotropy 
constants ( J  - ; ) ' ( J  - 1)z[/i7:;2], and are only about a factor of three smaller 
than the isotropic exchange 3%. This comparison does not take account of the 
strong dependence of the anisotropy terms on the orientation of the moments. The 
contribution of the trigonal coupling to the energy of the different structures is at least 
a factor of 100 smaller than the exchange energy. Nevertheless, the trigonal coupling 
in erbium is surprisingly large relative to the RKKY interaction, and its magnitude 
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emphasizes again that a first-principles explanation of the relative magnitudes of the 
various magnetic interactions in the rare-earth metals is still lacking. 

R A  Cowley and J Jensen 
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Appendix 

In this appendix symmetry arguments are used to obtain a general form for the 
magnetic Hamiltonian when the moments are localized on an HCP lattice. The 
method used is the same as that of Jensen and Houmann (1975) in their discussion 
of the magnon-phonon interaction in terbium. We considcr only the case where the 
magnetic moments are the same throughout a single hexagonal layer perpendicular to 
the c-axis, and derive a gcneral Hamiltonian from the completeness and the relatively 
simple transformation properties of the Racah operators, G I ,  (see the review by 
LindgArd and Danielsen (1974)). We assume that only urial tensors contribute. Polar 
tensors vanish for the  isolated ions, but may in principle be non-zero in the HCP 
metals, because the surroundings lack inversion symmetry. They occur then because of 
odd-parity configuration-mixing of the 4f wavefunctions, which should be insignificant 
for the ground-state multiplet. 

The combination of the requirements that the Hamiltonian should be Hermitian, 
( C O , , ) ~  = c*(-1)"'Ol-,,,, and invariant with respect to time reversal, CO,, + 

( - l ) ' ( c6 im) t ,  implies that a general term in the Hamiltonian may be written 

- - I 

x = ~ [ ~ ~ " ( i ~ ) ~ l m ( i ) 6 , , m , ( ~ )  
. .  
I J  - - 

+ ( - 1 ) m f m ' k m m '  ' I '  ( i d * O I  -,(~)ol,-m,(dl (*I) 

t w i m  = O h  

{~$]6,,,, = e"m6 '"3 

{",m = tc2z}ol, = (-11'61 -* 

t.,)% = tc2y}olm = (--1)'+"6l -m 

tgz16,m = tc*zl% = ( -1Im% 

where 1 + 1' must be even. The axial tensor operators transform as follows: 
- 

I 

- - 
I I 

where {I} is the inversion operator, { U = )  is a reflection in the plane perpendicular 
to the z-axis, {C2=) is a rotation by T around the z-axis, and IC:} is a rotation 
around the z-axis by an angle 4. 
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For the HCP structure with uniform hexagonal layers, the c-axis is a threefold axis, 
and when the I-, y-, or z-axes are parallel respectively to the a-, b-, or c-axis of the 
lattice, the Hamiltonian (Al) is invariant with respect to the application of {Ci"'3}, 
to give 

m + m ' = 3 p  p = O , 1 , 2  ,... . (W 
The (p  = 0)-terms include the isotropic exchange, the  anisotropic interaction 
IC&'(q), and the axial crystal-field anisotropy, whereas the hexagonal crystal-field 
anisotropy is a (p  = 2)-term. We shall not consider these contributions further but 
concentrate on the terms for which p is odd, or  more specifically on the  case p = 1 
or m+ m' = 3. 

Introducing (-l)"'+" = -1 in (Al) and using that the plane perpendicular to 
an a-axis, or  {U=), is a symmetry element, we obtain 

Since l + 1' is even, this implies that i-;,""(ij) is purely imaginary, 
- 

EF"(ij)* = - I<E"( i j )  (AS) 

and the resulting Hamiltonian may be written as 71 = xi, N ( i j )  with 
- - 

X ( i j )  = ~i;"(i j)[~,m(i)O,,m,(j)  + 8l -,,,(i)6,, -,,,,(j)]. (A6) 

The hexagonal layers are mirror planes of the lattice. A reflection with respect to the 
layer in which the ith ion is situated implies that ( i , j )  + (i,?), and hence that 

01 

Q y ' ( i , ? )  = - k F " ( i , j ) .  (4-7) 

In the following. the indices 1 and 2 label the two HCP sublattices and (a.,13) = (1.2) 
or (2,l). The HCP lattice is invariant under a translation plus a rotation by T (or 
~ / 3 )  around the c-axis, in which operation ( i l ,  j,) - ( iZ . j o ) ,  

Wil,j ,)  = {Czz171(i*,jo) = - W i 2 , j o )  

or 
- ,  

i?;"(i2,jo) = -IiEm (il,j,) 

The combination of (A7) and (A8) implies that 

showing that the coupling is symmetric in i and j, or in (1m) and ( l 'm'),  when 
the sites belong to different sublattices, but antisymmetric if they belong to the same 
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sublattice. The combination of the symmetry operations used above generate the HCP 
lattice. 

In the lowest order of 1+1' 2 m+m', i.e. for 1+1' = 4, there are three possibilities 
for a trigonal coupling: K::, Ri:, and E;;. Introducing the Stevens operators, which 
are Hermitian, instead of the Racah operators, we may write the @:-coupling as in 
equation (2.1.39) of Jensen and Mackintosh (1991). Here we consider instead the 
coupling 2;;. Using 63f2 = f i ( O ~ ~ i i O ; * ) / v %  and GI*,  = ( 7 J Z  -iJy)/&, 
we obtain 

R A Cowley and J Jensen 

(A101 x = x3 = ~Ii, ,(v)[o:(i)Jy, 21 . ' + 0;2(i)J,,1 
:J 

where Ii;i(ij) = ( 6 / 2 i ) k ; ; ( i j )  and is real. 
We have neglected the complication that the Hamiltonian (Al) in the ordered 

phase, where the time-reversal symmetry is broken, may contain terms proportional 
to (&) of (mainly) magnetoelastic origin, because these terms do not change the 
qualitative features of the model. 
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